澳洲AMC最后一道求救,真做不出

在澳大利亚中学教育






类似题型还出现过不少次,这类题目怎么解法?
答案:765

评论

汗,看到楼主好几个类似的帖子
一直没有回复,因为真不想做圣母。不过看你这么挣扎,还是忍不住了。
这些题目详解在AMT官网的书籍里面都有的,孩子真喜欢数学,想要参与竞赛的话,我强烈建议你买几本书吧。也支持一下AMT是非盈利机构,靠卖书回点本。绝对物超所值,我们没有去补习社的,都是靠自己做题看详解(有时候好几个解法,都是智慧结晶)一步步走下来的,实在做不来的题目有时候自己看明白了比别人喂收获更大。

当然如果楼主只是想放到论坛上赚点分,大家讨论讨论,可以忽略我的发言~

评论

這東西沒有配方,熟悉基本結果,然後順著每條思路想一想,看看那條有用。
要自己做才能懂,光是聼或看解答很容易一聼就懂,一看就會,一做就錯。

這次給些提示吧。
a) 假設3個數位是 A,B,C
b) 跟 222 與其倍數有關
c) 跟 222 的倍數和 3231 差有關

想“系統”地學要花時間,把這裏高中的排列組合學透。
然後把基本數論内容學透例如 https://refkol.ro/matek/mathbook ... y-Number-Theory.pdf 1-9 章



评论
接着楼上白虎和路人的话说两句,纯个人观点。

AMC最后5题难度(及以上)题目的解答,是需要前置一些超纲知识与解题技巧的(这里不讨论天生圣体)。

这里的超纲知识与解题技巧,不是指具体的某道题目怎么做,而是一些经常会用到的东西,它们未必能直接帮你找到答案,但能让你在寻求答案时事半功倍。比如:
- 3,5,7,9,11这些数的倍数有哪些特点。
- 除以3,5,7都余/差1的数有什么特点。
- 点线依次连接,什么时候点比线多1,什么时候点线一样多。
等等

以这题为例,能不能解出这道题并不重要,重要的是:

1、学会如何用数学表示这六个数
100a+10b+c
100a+10c+b
100b+10a+c
100b+10c+a
100c+10a+b
100c+10b+a
(把这6个数加起来就能明白路人说的222是什么意思了)

2、知道WLOG,算5个数的和的时候可以去掉上面6个数的任意一个(比如去掉100a+10b+c),那么
--- 6个数的和 = 222a + 222b + 222c = 222(a+b+c)
--- 5个数的和 = 122a + 212b + 221c

如果娃卡在这里了,你可以和娃讨论一下,是从6个数的和继续还是从5个数的和继续,以及为什么这么选择。

如果娃连如何表示这6个数以及它们的和都不会,那意味着这个题目对娃来说太难了。一般来说,(不放弃的话)个人建议三种选择:
选择一:先找更简单/容易一些的题练习,或者像楼上建议的找适合的书籍自学。
选择二:父母有能力的话,每道题都尽可能将题目以及相关知识全部讲透。根据个人经验,初期一道题目半小时到一小时是家常便饭。
选择三:报个奥数/AMC/奖学金之类会教一些基本套路的补习班。(不要说套路化方法不好,那是熟悉套路以后才有资格说的话)

再次,以上仅为个人观点。

评论


再说几句:

------------------------------------------------

上贴说到,六个数字的和一定是222的倍数
222 × 15 = 3330
3330 - 3231<100
六个数字的和一定比3330大
(让孩子想一想,为什么从 × 15开始)

222×16 = 3552
3552 - 3231 = 321
经检验,321不是答案
检验方法一:321+312+213+231+123+132<3552
检验方法二:321*6<3552
检验方法三:3+2+1<16
(让孩子想一想三个方法各是什么原理,哪个方法最优)

222×17 = 3774
3774 - 3231 = 543
经检验,543不是答案

222×18 = 3996
3996 - 3231 = 765
经检验,765是答案

(下面的两步计算非必要,但可作为验算的一部分)
222×19 = 4218
4218 - 3231 = 987
经检验,987不是答案

222×20 = 4440
4440 - 3231 > 987
六个数的和不可能大于等于4440

以上的部分,让孩子独立探索(尽可能少地给予提示)是相当必要的,这有助于培养良好的数感。

------------------------------------------------

PS:现在回头看下路人给出的提示:

a) 假設3個數位是 A,B,C(脑内部分)
六个数的表示略

b) 跟 222 與其倍數有關(脑内部分,A,B,C在三个位数各出现两次)
六个数的和=222A+222B+222C=222(A+B+C)

c) 跟 222 的倍數和 3231 差有關(脑内部分)
第六个数等于222*15=3330-3231=99+222=321(16×)+222=543(17×)+222=765(18√)

路人水平解这道题,草稿纸上至多只需要红色部分这么多的步骤。

评论

1.
设3个非0数为a, b, c, 其排列共6种,组成的三位数的和可表示为:
abc+acb+bac+bca+cba+cab=222(a+b+c),

为何是 222(a+b+c)?

步骤如下:
6个数字总和的百位是(2a+2b+2c)x100, 十位是(2a+2b+2c)x10, 个位就是(2a+2b+2c)
加起来就是(2a+2b+2c)x100 +(2a+2b+2c)x10 +(2a+2b+2c)=2(a+b+c)(100+10+1)=222 x(a+b+c)



2.
因其中的五个三位数的和为3194,这六个三位数的和的范围是:(第6个数最少是123,最大为987)
3231+123<  222 x(a+b+c)<  3231+987

该数的范围是(3354,4218)之间并且是222的倍数,且3354÷222<a+b+c<4218÷222
即15.1<a+b+c<19,

a+b+c只可能是16,17,18,
16x222=3552
17x222=3774
18x222=3996

3.
在这个区间内是222的倍数的只有3552,3774,3996
由于这是6个数的和,因此必须减去5个数和3231,得到第6个数字
就是3552-3231=321, 3774-3231=543,3996-3231=765

4.
由于a+b+c只可能是16,17,18(见上)
321 的3个数字总和3+2+1=6(排除掉)
543 的3个数字总和5+4+3=12 (排除掉)

5.
唯一符合答案的就只有765 的3个数字总和7+6+5=18 (排除掉)
所以第6个数只能是765

评论
你自己看吧,看懂了再去教小孩子

评论
a+b+c=0 mod 3,guess &check,7,6,5

评论
忍不住AI了一下。不同的AI平台居然不同答案。有知道哪个对的吗?

评论
GPT o1:

**Solution Explanation**

Suppose the three distinct nonzero digits are \(a\), \(b\), and \(c\).  The six different 3-digit numbers formed from these digits are:

\[
\begin{aligned}
&abc = 100a + 10b + c,\\
&acb = 100a + 10c + b,\\
&bac = 100b + 10a + c,\\
&bca = 100b + 10c + a,\\
&cab = 100c + 10a + b,\\
&cba = 100c + 10b + a.
\end{aligned}
\]

If we sum *all* six of these numbers, note how many times each digit appears in the hundreds, tens, and units places:

- Each of \(a, b, c\) appears exactly twice in the hundreds place (contributing \(2 \times 100 = 200\) each).
- Each of \(a, b, c\) appears exactly twice in the tens place (contributing \(2 \times 10 = 20\) each).
- Each of \(a, b, c\) appears exactly twice in the ones place (contributing \(2 \times 1 = 2\) each).

Hence, the total contribution of each digit \(a, b, c\) is
\[
200 + 20 + 2 = 222,
\]
and the sum of *all six* permutations is
\[
\text{Sum of all 6} \;=\; 222(a + b + c).
\]

We are told that the *sum of five* of these numbers is 3231.  Let \(M\) be the *missing* (i.e., sixth) number.  Then

\[
M \;=\; \Bigl[\text{Sum of all 6}\Bigr] \;-\; 3231 \;=\; 222(a + b + c) \;-\; 3231.
\]

Since \(M\) itself must be one of the 3-digit permutations \(\{abc, acb, \dots\}\), it must be between 100 and 999, and its digits must add up to \(a + b + c\).  

Through checking feasible values of \(a+b+c\) (and ensuring the difference is indeed a 3-digit permutation of those digits), one finds:

- When \(a + b + c = 18\),
  \[
  222 \times 18 = 3996,
  \quad
  M = 3996 - 3231 = 765.
  \]
  The digits of 765 are 7, 6, and 5, which indeed sum to 18.  

Therefore, the three digits are \(5, 6, 7\), and the missing number is

\[
\boxed{765}.
\]

To confirm, the six permutations of \(5,6,7\) are:
\[
567,\; 576,\; 657,\; 675,\; 756,\; 765,
\]
whose total sum is \(3996\).  Omitting \(765\) leaves \(3996 - 765 = 3231\), exactly as stated in the problem. Hence \(\,765\) is the required sixth number.

评论
three different non-zero-digits are used to form six different 3-digit numbers. the sum of five of them is 3231. what is the sixth number?
Understanding the Problem
We are given:

Three different non-zero digits: Let's denote them as
A
A,
B
B, and
C
C.

Six different 3-digit numbers: These are formed by arranging
A
A,
B
B, and
C
C in all possible orders. Since there are 3 digits, the number of permutations is
3
!
=
6
3!=6.

Sum of five of these numbers is 3231: We need to find the sixth number.

Our goal is to determine the value of the sixth 3-digit number.

Step 1: Listing All Possible 3-Digit Numbers
First, let's list all six possible 3-digit numbers formed by
A
A,
B
B, and
C
C:

A
B
C
ABC (which represents
100
A
+
10
B
+
C
100A+10B+C)

A
C
B
ACB (
100
A
+
10
C
+
B
100A+10C+B)

B
A
C
BAC (
100
B
+
10
A
+
C
100B+10A+C)

B
C
A
BCA (
100
B
+
10
C
+
A
100B+10C+A)

C
A
B
CAB (
100
C
+
10
A
+
B
100C+10A+B)

C
B
A
CBA (
100
C
+
10
B
+
A
100C+10B+A)

Step 2: Calculating the Sum of All Six Numbers
Let's add all six numbers together:

A
B
C
+
A
C
B
+
B
A
C
+
B
C
A
+
C
A
B
+
C
B
A
=
(
100
A
+
10
B
+
C
)
+
(
100
A
+
10
C
+
B
)
+
(
100
B
+
10
A
+
C
)
+
(
100
B
+
10
C
+
A
)
+
(
100
C
+
10
A
+
B
)
+
(
100
C
+
10
B
+
A
)
=
(
100
A
+
100
A
+
10
A
+
A
+
10
A
+
A
)
+
(
10
B
+
B
+
100
B
+
100
B
+
B
+
10
B
)
+
(
C
+
10
C
+
C
+
10
C
+
100
C
+
100
C
)
=
(
222
A
)
+
(
222
B
)
+
(
222
C
)
=
222
(
A
+
B
+
C
)
ABC+ACB+BAC+BCA+CAB+CBA

  
=(100A+10B+C)+(100A+10C+B)
+(100B+10A+C)+(100B+10C+A)
+(100C+10A+B)+(100C+10B+A)
=(100A+100A+10A+A+10A+A)
+(10B+B+100B+100B+B+10B)
+(C+10C+C+10C+100C+100C)
=(222A)+(222B)+(222C)
=222(A+B+C)


So, the sum of all six numbers is
222
(
A
+
B
+
C
)
222(A+B+C).

Step 3: Relating the Given Sum to Find the Sixth Number
We are told that the sum of five of these numbers is 3231. Let's denote the sixth number as
N
N. Therefore:

Sum of five numbers
=
3231
Sum of all six numbers
=
3231
+
N
Sum of five numbers=3231
Sum of all six numbers=3231+N
From Step 2, we know:

3231
+
N
=
222
(
A
+
B
+
C
)
3231+N=222(A+B+C)
Our goal is to find
N
N. To do this, we need to determine
A
+
B
+
C
A+B+C.

Step 4: Solving for
A
+
B
+
C
A+B+C
Let's rearrange the equation:

N
=
222
(
A
+
B
+
C
)

3231
N=222(A+B+C)−3231
Since
A
A,
B
B, and
C
C are digits (1 through 9),
A
+
B
+
C
A+B+C must be an integer between 3 and 27.

Let's find possible values of
A
+
B
+
C
A+B+C such that
N
N is a positive 3-digit number.

Let's denote
S
=
A
+
B
+
C
S=A+B+C. Then:

N
=
222
S

3231
N=222S−3231
We need
N
N to be a 3-digit number, so:

100

N

999
100

222
S

3231

999
100≤N≤999
100≤222S−3231≤999
Let's solve the inequalities:

222
S

3231

100
222S−3231≥100

222
S

3331
S

3331
222
S

15.0
222S≥3331
S≥
222
3331


S≥15.0
222
S

3231

999
222S−3231≤999

222
S

4230
S

4230
222
S

19.05
222S≤4230
S≤
222
4230


S≤19.05
Since
S
S must be an integer,
S
S can be 15, 16, 17, 18, or 19.

Step 5: Testing Possible Values of
S
S
Let's test each possible value of
S
S to find a valid
N
N.

Case 1:
S
=
15
S=15
N
=
222
×
15

3231
=
3330

3231
=
99
N=222×15−3231=3330−3231=99
But
N
=
99
N=99 is not a 3-digit number. So,
S

15
S

=15.

Case 2:
S
=
16
S=16
N
=
222
×
16

3231
=
3552

3231
=
321
N=222×16−3231=3552−3231=321
N
=
321
N=321 is a valid 3-digit number.

Let's check if
S
=
16
S=16 is possible with three distinct digits from 1 to 9.

Possible combinations for
A
+
B
+
C
=
16
A+B+C=16:

7, 8, 1 → Sum = 16

6, 9, 1 → Sum = 16

5, 9, 2 → Sum = 16

4, 9, 3 → Sum = 16

5, 8, 3 → Sum = 16

6, 7, 3 → Sum = 16

4, 8, 4 → Not valid (digits must be distinct)

etc.

There are multiple valid combinations, so
S
=
16
S=16 is feasible.

Case 3:
S
=
17
S=17
N
=
222
×
17

3231
=
3774

3231
=
543
N=222×17−3231=3774−3231=543
N
=
543
N=543 is a valid 3-digit number.

Check for
S
=
17
S=17:

Possible combinations:

8, 7, 2 → Sum = 17

9, 6, 2 → Sum = 17

7, 6, 4 → Sum = 17

etc.

Again, multiple valid combinations exist.

Case 4:
S
=
18
S=18
N
=
222
×
18

3231
=
3996

3231
=
765
N=222×18−3231=3996−3231=765
N
=
765
N=765 is a valid 3-digit number.

Check for
S
=
18
S=18:

Possible combinations:

9, 8, 1 → Sum = 18

9, 7, 2 → Sum = 18

8, 7, 3 → Sum = 18

etc.

Valid combinations exist.

Case 5:
S
=
19
S=19
N
=
222
×
19

3231
=
4218

3231
=
987
N=222×19−3231=4218−3231=987
N
=
987
N=987 is a valid 3-digit number.

Check for
S
=
19
S=19:

Possible combinations:

9, 8, 2 → Sum = 19

9, 7, 3 → Sum = 19

8, 7, 4 → Sum = 19

etc.

Valid combinations exist.

Step 6: Determining the Correct
S
S and
N
N
We have multiple possible values for
S
S and corresponding
N
N. To find the correct one, we need additional constraints or information. However, since the problem states that the sum of five numbers is 3231, and we've derived that
N
=
222
S

3231
N=222S−3231, and
N
N must be one of the six numbers formed by
A
A,
B
B, and
C
C, we can deduce that
N
N must be consistent with the digits
A
A,
B
B, and
C
C.

Given that all six numbers are formed by the same three digits, and their sum is
222
S
222S, and five of them sum to 3231, the sixth number
N
N must be such that when added to 3231, it equals
222
S
222S.

Since
N
N is one of the six numbers, and all six numbers are permutations of
A
A,
B
B, and
C
C,
N
N must be a permutation of these digits.

Given that, let's consider the smallest possible
N
N that fits our earlier cases.

From our cases:

S
=
16
S=16,
N
=
321
N=321

S
=
17
S=17,
N
=
543
N=543

S
=
18
S=18,
N
=
765
N=765

S
=
19
S=19,
N
=
987
N=987

We need to check which of these
N
N values can be formed by the digits
A
A,
B
B, and
C
C that sum to
S
S.

Let's take
S
=
16
S=16,
N
=
321
N=321:

Digits: 3, 2, 1

Sum:
3
+
2
+
1
=
6

16
3+2+1=6

=16

This doesn't match
S
=
16
S=16.

Next,
S
=
17
S=17,
N
=
543
N=543:

Digits: 5, 4, 3

Sum:
5
+
4
+
3
=
12

17
5+4+3=12

=17

Doesn't match.

Next,
S
=
18
S=18,
N
=
765
N=765:

Digits: 7, 6, 5

Sum:
7
+
6
+
5
=
18
7+6+5=18

This matches
S
=
18
S=18.

Finally,
S
=
19
S=19,
N
=
987
N=987:

Digits: 9, 8, 7

Sum:
9
+
8
+
7
=
24

19
9+8+7=24

=19

Doesn't match.

Therefore, the only valid case is
S
=
18
S=18,
N
=
765
N=765.

Step 7: Verifying the Solution
Let's verify that with
A
=
7
A=7,
B
=
6
B=6,
C
=
5
C=5, and
S
=
18
S=18, the sum of all six numbers is
222
×
18
=
3996
222×18=3996, and the sum of five numbers is 3231, so the sixth number should be
3996

3231
=
765
3996−3231=765.

Listing all six numbers:

765
765

756
756

675
675

657
657

567
567

576
576

Sum of all six:

765
+
756
+
675
+
657
+
567
+
576
=
3996
765+756+675+657+567+576=3996
Sum of five numbers (excluding 765):

756
+
675
+
657
+
567
+
576
=
3231
756+675+657+567+576=3231
This matches the given condition.

Final Answer
The sixth number is 765.



评论
心算结果是567
不拿纸笔不行啊

评论
sum of total six numbers:
   100*(2a+2b+2c)+10(2a+2b+2c)+(2a+2b+2c)=222*(a+b+c)

Maxium total of six numbers :  3231+987=4218  
           -> max sum of 3 digits : 4218/222  =19
Minimum total of six numbers:  3231+123=3354
           -> min sum of 3 digits :  3354/222  ~=15.11->16


222*16=3552 -3231  = 321     6*222 X
222*17=3774  -3231 = 543     12*222 x
222*18=3996  -3231 = 765
222*19=4218  -3231 = 987     24*222 x
澳洲中文论坛热点
悉尼部份城铁将封闭一年,华人区受影响!只能乘巴士(组图)
据《逐日电讯报》报导,从明年年中开始,因为从Bankstown和Sydenham的城铁将因Metro South West革新名目而
联邦政客们具有多少房产?
据本月早些时分报导,绿党副首领、参议员Mehreen Faruqi已获准在Port Macquarie联系其房产并建造三栋投资联

中学教育

中学教育

AMC最后一道求救,真做不出

澳大利亚类似题型还出现过不少次,这类题目怎么解法? 答案:765 评论 汗,看到楼主好几个类似的帖子 一直没有回复,因为真不想做圣母。不过看你这么挣扎,还是忍不住了。 这些题目详解 ...

中学教育

中学数学作业

澳大利亚娃今年7年级。 数学老师布置作业,教材是电子版的,居然要他们把某些题目手抄下来,再回答。一个作业写了1个小时。 请问,新州公立都这样吗?能不能自己打印出来,贴上去,直接 ...

中学教育

中学补习

澳大利亚了解到很多中学数学都有加速班,数学都会提前学比如8年级学9年级的9年级学10年级,那为什么还有很多人要去外面补习数学呢 评论 8年级可以学10-11年级的,才能做到抢跑。 评论 基本 ...

中学教育

各州高中选课及高考制度

澳大利亚希望对这个话题特别了解或者家有中学生的网友们解答一下。这边7-9年级,是各个学校教学都差不多,基本上按照统一的大纲,还是各个学校都没有教材,完全根据学生水平和老师决定 ...

中学教育

Sydney Grammar School今年14个满分?!

澳大利亚没有看错吧?14个满分! 评论 感觉就是几个学校起起伏伏,明年可能又是一番光景 评论 太厉害啦 评论 恭喜 SG, 牛! 评论 剛剛在 HSCninja 上看到牛蛙們的名字和成績 https://www.hscninja.co ...

中学教育

孩子想学医,持分请教可能的路径,感谢

澳大利亚理想可以经常改变但是总要有,要不然肯定实现不了。 孩子最近碰到个朋友,受了点刺激,打算大学学医。 这可难了,分数这么高,孩子本身也没刻苦学过,家长其实也不打算催他刻苦 ...

中学教育

说到私校公校个人的一些观点

澳大利亚1. 市场经济,这么多人愿意多花钱的东西肯定是好的,但是一样数目的钱,对于每个家庭的意义是不一样的,所以结合自己的经济情况来看 2. 私校因为是收了钱的,所以相应的,提供的 ...

中学教育

砸了Year12 第一次assessments

澳大利亚有这经验的家长请指教 儿子的12 年级第一个assessments表现不佳, 都在70几到80几分之间 孩子感到非常失望,也同时失去了希望 如何帮助孩子重建自信 想读UNSW的物理治疗physiotherapy 还有希 ...

中学教育

新州HSC的高考状元榜出来了(更新17/12)

澳大利亚花落各家尘埃定,膜拜一下牛蛙们lol https://www.nsw.gov.au/education ... -lists/first-course 4U数学:James Ruse 3U数学:The Scots College 3U英语:St Aloysius' College 2U英语:Cranbrook 2U物理:James Ruse 2U化学: ...

中学教育

数学几何题求助!

澳大利亚三角形ABC中,三条高如图交于点H,∠A的平分线AF依次交两条高BM、CN于D、E。 XE、XD为三角形DEH外接圆的切线。 K在BM上,且XK=XD。 L为CX与AH的交点。 求证:KL⊥AH。 评论 大概: 設 EKD = ...

中学教育

Oh Yeah VS OMG

澳大利亚放假了,大家心情如何? 我的心情很矛盾 Oh Yeah 不用起早,不用接送了。 OMG要管理teen的手机,电脑,ipad,ps4,Netflix,YouTube等等等等了,想死的感觉。 不管的话,就可以天昏地暗无休 ...

中学教育

VCE 2024 Student honour roll

澳大利亚VCE 2024 Student honour roll 出来了,但是各媒体网站都要注册才能看。从VCAA找到了这两个文件,分享给大家 View the results of VCE high-achieving students https://www.vcaa.vic.edu.au/Docu ... 024StudentData.xlsx ...

中学教育

Brisbane Girls Grammar School 2024 ATAR亮眼

澳大利亚BGGS had one student attain the highest ATAR possible with the 2024 cohort's median ATAR sitting at a mighty 96.20. Brisbane Grammar School is proud to celebrate the exceptional ATAR results of our 2024 Year 12 students. Five BGS students a ...

中学教育

维州VCE:ATAR 90以上哪家强?

澳大利亚根据最近媒体报道,部分整理如下(未更新): Rank School Name % of Students with ATAR 90 1 Mac.Robertson Girls' High School 73.1% 2 Melbourne High School 71.89% 3 Presbyterian Ladies' College (PLC) 70% 4 Fintona Girls’ ...